

 PREFACE

 In the twenty first century, computers have become an essential part of our life.
For students, the knowledge of computers and moreover programming is a must. Even if
we are remotely associated with this technological field, programming can help us solve
many real world problems. A step in the right direction has been taken up by the ICSE
Board to educate students the basics of Java programming language. Java- A High Level
Language that has transformed the internet, computers and mobile telephony. It is also
widely used in several other platforms.
 Before compiling this book, I have considered several factors. Great stress is laid
on basic concepts. Even several minute details have been explained and each concept has
been handled carefully. I have even included a project for guiding students. This book
also benefits from my experiences as a student.
 Reading a book is not enough, heaps of practice is needed. I have included lots
and lots of examples. Screenshots of the terminal windows will definitely assist students.
Programming can be an addiction and a serious hobby, so once we acquire the basic skills
advancing forward is not difficult .The book is strictly based on the ICSE syllabus and
will assist students in securing excellent marks. All programs are well equipped with
comments that will help students understand the code easily.
 I welcome any suggestion and positive criticism. You can easily contact me. My
e-mail address is nitishupreti@gmail.com. I will be grateful to receive feedbacks from the
readers.
 Thanks.
 NITISH UPRETI

mailto:nitishupreti@gmail.com

 JAVA AND OOP

Computers have been with us for a long time. In the recent years computer’s hardware as well as
software has evolved quickly. Before we plunge into a discussion of Java, a quick study of how it
evolved is quite necessary.

 A structured oriented programming language named C commenced the modern era of programming
language. Prior to the evolution of C, many languages such as COBOL, PASCAL, BASIC and
FORTRAN were in commonplace. All these languages were not efficient enough to be considered as
an answer to the problems that programmers faced while working with software codes. C became the
most extensively used language during the late 1970s and 1980s. Soon a need for a better language
was raised, the cause being the increasing complexity of programs. To cope with this problem C++
was developed by Bjarne Stroustrup in 1979.

Java was developed by a group of programmers at Sun Microsystems in 1991. Earlier it was named
Oak. The intention behind the development of this language was to create a platform independent
language that could be used in devices like microwave ovens. Now by using this characteristic of Java
the language is widely used in mobiles for developing games, applications etc. The secret of the
platform independent characteristic of Java lies in bytecode and JVM (Java Virtual machine).When we
compile a java program it is converted to bytecode and then Java Virtual Machine executes the
bytecode. Thus as a developer we don’t need to make separate versions of our software for different
platforms. A code in java will run perfectly in Windows, Linux, Macintosh or any other Operating
system. Even a hardware upgrade does not affect the program.

OOP concept----

Java and C++ both are OOP (Object Oriented Programming) language. OOP is the crux of the two
languages, especially Java. A curiosity arises in our mind, what is OOP and objects? We will now
study OOP in some detail. Earlier we read that C++ was able to handle the increasing complexity in
programs, this is all because Java is Object Oriented unlike C which is Structured Oriented. After we
have studied OOP, students will be given a basic introduction of structured oriented approach. In OOP
we take a program in terms of objects rather than methods or procedures. Characteristics of objects are
determined by data and behaviour by methods or functions. OOP corresponds better to real life
situations then any other paradigm.

Objects, also known as instances, are an independent unit with certain characteristics. Another
important term associated with OOP is class. A class is group of objects. In C++ we can directly work
on methods without creating a class, but in Java designing a class is binding on the programmer. A
class acts as an encapsulating unit thus binding data and function in itself. A real life example of class
can be fruits, which has instances like Mango, Apple and Banana.

 Fruits

 Mango Apple Banana

In structured oriented approach the stress is on procedures, sometimes also known as methods or
functions.

The three principles of OOP -
1. Encapsulation
2. Inheritance
3. Polymorphism

Encapsulation - As we studied earlier, Encapsulation is the mechanism of binding Data and function
into class. This principle enables data abstraction i.e. hiding complexity and we can concentrate on
relevant details. We can understand this concept better by taking a practical example of mobile phone
which forwards hundreds of text messages everyday. Although we know the application but “how our
mobile connects to network and how the network handles the traffic of thousands of such messages” is
not known to most of us. Some access keywords like private and public help us to encapsulate our data
or allow it to be accessed anywhere.

Public --- Data members declared public are available outside the class.
Private ---Data members declared private are available within the class.

Inheritance - The word ‘Inheritance’ describes a lot about itself. We inherit traits from our parents
and have our own added qualities, thus we are not clones but have an individual personality. The same
principle applies in programming. After creating a parent class we can define its child class and hence
reusing our code. The child class will have some added properties. Inheritance allows us to create an
object oriented hierarchy.

Polymorphism - If you understand the meaning of the word, the whole concept will quickly become
apparent. ‘Polymorphism’ is a Greek word that means “many forms”. Again taking a practical
example of mobiles, we can compare polymorphism to the ringing of phone. If you get a message
from Ankit the phone rings, the phone will even ring if you get a call from Nikhil. The ringing
capability of phone is polymorphic. Take a look at ‘+’ i.e. addition operator; it is used to add variables
and constants. This operator can also be used to concatenate two ‘strings’ which is just a group of
characters like “k3b” or “splash”. In the upcoming chapters we will deal with method and constructor
overloading that too demonstrates polymorphism.

Starting with Java

Before you start writing programs in Java, make sure that you have jdk (Java Development Kit)
installed on your P.C. JDK is collection of tools that allow us to compile, run and debug programs.
The latest version is jdk1.5 which you can download from Sun Microsystems’s website provided you
have a broadband internet connection. Else look for computer magazines for this software. Java

development kit is available free of cost so you can get it easily. All the tools which help us to develop
are in the bin directory of the installed folder.

The main tools are---
1. java ---- Java interpreter, it runs application.
2. javac --- Java compiler, converts source code to byte code.
3. jdb ---- Java debugger helps us to fix errors in our program.
4. javah --- Produces header files
5. javap --- Java disassebler.
6. Javadoc - It creates HTML documents from our java code.

Some other tools ---
1. appletviewer — Helps us to view and run applets. (Applets are small programs that are embedded in
web pages)
2. Jar --- A tool to make zipped files that are also known as jar files (Java Archive Files) and can be
distributed by the developer after finishing his software. Jar files are platform independent and can be
executed in any OS. They contain the bytecode which is executed by JVM.

Your First Java Program
There are two ways by which you can write, compile, run and debug your applications.

1. For writing the code you need a text editor like notepad. You can directly compile and execute
programs from the DOS prompt.

2. Use software like BlueJ or JCreator. We will discuss these in detail after we are familiar with
the first method.

 I assume that you are using Windows OS as it is the most widely used operating system. If you have a
machine running a flavour of LINUX than the steps will differ.

Writing a your first program in Notepad ---
Go to start and click on Run. In the dialog box specify notepad. It will open notepad.

.

You can write your text in it or use any other suitable editor. I personally use ‘notepad 2’ as it is really
light on computer’s resources and has many more features to offer than the original notepad bundled
with windows. If you have Linux you can use “Kate”, a nice text editor.
Lets make a simple program that prints the statement —
“This is a Java Program”

The code is to be written exactly in the same way. As Java is case sensitive, a small mistake can lead
to failure in compilation.

/*This the first java program hence named first.java*/
class first
{
public static void main (String args[])
{
System.out.println (“This is a java program”); //Printing a statement
}
}

Save this program in the bin folder of the jdk directory. Remember to save it with a name that is
similar to the class name i.e. first.java. Specify “All Files” in the save as type choice. This screenshot
is self explanatory.

Now you need to compile the program. Reach the Dos prompt by clicking start and then run. Type
“cmd”. The DOS (Disk Operating System) will open. Now follow the steps as you see in the picture.
However, the directory specification may differ but the general steps will always be the same.

You can easily figure out the use of javac and java commands.

Popular Error Encountered: Some times you may encounter
an error during the execution of program.
Exception in thread “main” java.lang.NoClassDefFoundError:
filename
Solution
Go to control panel System Click on Advanced Tab then
on “Environments Variables”
Double click on classpath and specify this path —
.;c:\Progra~1\Java\jdk1.5.0\jre\lib\rt.jar;c:\progra~1\Java\jdk1
.5.0\lib\dt.jar

Using an IDE----
IDE stands for integrated development Environment. It is a software that uses jdk as its base and
contains its own text editor. So you can write, run, compile your programs by only using that software.
In a simple line “An IDE makes our lives easier, providing extra features.” Some popular IDEs also
mentioned previously are BlueJ, Jcreator etc.

Following the syllabus we will only deal with BlueJ. It needs a minimum of jdk1.3 version installed.
Download this software from www.bluej.org. You will really appreciate its interface which is well
designed and is user friendly for the novice programmers. Yet it is a really powerful and a platform
independent tool.

A BlueJ window with a project opened is shown in the following figure ---

ou will first need to create a project. For this click on Project and then New Project. The complete

Y
menu looks like this-

fter creating a project you have to create a class. Cick on the “New Class” button for creating a new

his is a screen shot of BlueJ editor.

A
one. Once you have created a class and specified its name, double click on the class icon to open the
editor where you can write your program.

T

For compilation, right click on the class icon and click Compile.

Now you will be shown the ‘first’ program written in BlueJ. The key fact is that BlueJ makes our work
easier by making us write less. A person who is new to Java might think that the two codes are
different but as we will discuss later, there is no difference.

/*This the first java program hence named first.java*/

class first
{
public void main ()
{
System.out.println(“This is a java program”);
}
}

After compilation, executing a program is simple. Right click on the class icon and click on new first.
Here we are automatically creating an object of class. After reading a few more chapters you will
come to know about the significance of these steps.

In the next step specify the name of object. Now you will see an object created in the BlueJ window.

At last, right click on the object icon and then click “void main”.

You will see the output in BlueJ terminal window.

Understanding Java Programs
You have already seen the making and executing of a Java program. Understanding a program is the
most important task. Have a closer look at “first.java”

Line 1::

/* Multiline Comment*/
The comments on program are enclosed within it. The compiler ignores these lines and hence no error
is generated. Writing comments is not binding on the user.
Line 2::

class first
This is the second line of our java program. Here we have created a class named “first”. Creating a
class is binding on the programmer as Java is strictly object oriented. Everything is encapsulated
within a class.
Line 3::
{
Opening braces
Braces play a vital role in programming. A group of statements are enclosed in braces called blocks.
Brace, here depicts that the class has begin.

Line 4::
public static void main(String args[])
 In this line we have created a method or function using a list of java “keywords”. A keyword is a
special word that is recognized by the compiler and has a special use.

Keywords

1. public -- An access specifier, it declares that this method can be accessed by members who are
even outside this class.

2. static -- We have created a static method named “main”. In the context of methods “static”
keyword means that this method is independent of any object. As main is executed before any
other method, we need to make it static so that we can call other methods by creating their
instances here.

Special Note—You will notice that when the same program was
written in BlueJ, we did not mention the keyword “static”. So at the
time of executing we had to create an object. When we are not
working with BlueJ we have to manually create an object. The format
is --
 Class name objectname=new classname();
But as here we have a static method we don’t need to create any

h d
3. void -- You will learn in the upcoming chapters that a method can even return a value. The

“void” keyword here means that the method does not return any value. If these things seem too
complicated to you, have patience!! Soon each and every detail will be clear.

4. main (String args[]) -- We have now specified the main method. The brackets enclose within
themselves ‘the parameters’. Here we have an array of instances of String class. (Arrays are a
group of one kind of data and String is a predefined class in Java that stores series of characters
in itself).

Line 5::
{
Opening Brace
By this brace we come to know that our method has begun. It defines the starting point of method.

Line 6::
System.out.println(“This is a java program”);
This is an output statement. Well, there is good reason for this line working like magic and sincerely
you don’t need to mug it up. In Java we take input and output in forms of “Streams”. Imagine it as a
flow of data. System.out.println(); directs all the contents within the brackets as “Output Streams” to
the console. Here System is a predefined class, out an object and println() a method. Once you have
studied in detail about classes and objects, you will understand this scary business much better.
// Printing a statement
This is another way of writing comments. The difference being that this is a single line comment.
It has a scope till the end of line. For commenting on the next line, we have to again insert //.

Remember — Writing comments are not binding on the programmer but it is a good practice to insert
comments in your code. It makes the code clean, readable and understandable.

Line 7:
}
Closing Braces
These braces tell us that the method has ended. Now all other statements will not be considered as a
part of that method.

Line 8::
}
These braces illustrate the ending of class.

Another way of writing the same program
class first { public static void main(String args[]) { System.out.println(“This is a java program”); }}
You can even write the above mentioned program in this way. It is not recommended as it leads to a
complex program that is difficult to understand and maintain.

AMAZING FACT— Many softwares have even thousand thousands of lines of source code.

 Exercise
Q1. Discuss the evolution of Java.
Q2. How is the platform independent feature of Java implemented?
Q3. Explain Inheritance, Encapsulation and Polymorphism.
Q4. Write a short note on jdk and its tools.
Q5. What is an IDE?
Q6. Can we use Ms Word for writing java programs?
Q7. Write a program that prints the following two lines------
 “Java is a powerful language”
 “Executing a Java program”
Q8. Try writing and executing the Q.7 in BlueJ.
Q9. What are Java “keywords”? Explain some of them.
Q10. Why are comments important in our program?

 Data Types And Operators

In our daily life we receive information as stimulus from our surrounding. Then we
process and analyze it within our minds. A computer too gets input from several sources
which it processes to give an output. So data handling is a core issue of programming.

CONSTANTS

The word “constant” means anything that does not change. Constants that are also known
as “literals” have a fixed value in programming. Let us assume a number ‘6’, this digit
represents a number. If I order two shopkeepers to give me six DVDs of a movie, both
will supply me with the same number. The real world situation even applies here. In this
way we can even call alphabets ‘S’‘t’ ‘u’ ‘V’ and Strings such as “Delhi” as constants.

A proper hierarchy will be ---
Constants ---

1. Numeric Constants----- (1). Integer Constants
 (2). Real Constants

2. Character Constants---- (1).Characters

 (2).String

If you are confused by the terms “Real” and “Integer” constants then here is the answer…
An integer constant contains no fractional part while Real Constants contains a decimal
value.

 VARIABLES

A variable as the names suggest is an entity whose values changes from time to time.
Imagine that you are solving an algebraic equation where you are calculating values of
‘x’ and ‘y’ (two variables). After solving the question you might get the values 6, 17.
Similarly in the next question the values of ‘x’ and ‘y’ may turn out to be 1, 14. This
concept is also applicable in programming.
When we create a variable, a part of temporary memory is assigned to it. The value is
stored till the execution of program and later the memory is freed. Just like constants a
variable can also be of several types.

Data Types
Each and Every variable and constant holds a certain data. The data can be classified
under any of these types. While declaring variables we have to specify its type.

Remember: Java is said to be strictly typed language. This is because of the fact
that you can not easily assign a variable with a value of another data type.

Integer Type
Integer (int) Holds digits without any fractional part.
Short (short) Holds digits without any fractional part. The range of value it holds is less
if compared with “int”.
Long (long) Holds digits without any fractional part. The range of value it holds is
more if compared with “int”.
Byte (byte) Holds digits without any fractional part. The range of value it holds is
least.

Float Type
Float (float) Holds digits with fractional part.
Double (double) Holds digits with fractional part. The range of value it holds is higher in
comparison with float.

Character Type
Char (char) Holds a single character.

Classification of Data Types
 Data Types
 ||
 ||
 ==
 || ||
 || ||
Primitive (Intrinsic) Non-Primitive (Derived)
 || ||
 || ====== ====================
 || || || ||
 || Classes Arrays Interface
 ||
 ||
=================================
 || ||
Numeric Non-Numeric
 || ||
============= ============
 || || || ||
Integers Float Characters Boolean

Reserved Words
There are certain predefined keywords in Java that help us in programming. Thus we
cannot use them as variables name.

Special Printing Characters
Sometimes you want to format your output in a certain way. In such conditions you use
these characters.
Study this Example which demonstrates the use of one of the special character, it also
shows the use of variables and data types.

class demo
{
public static void main(String args[])
{
int no1,no2; //Two variables of data type int
char name='N'; // Initialization at the tome of variable declaration

//Post Initialization
no1=17;
no2=12;

System.out.println ("Character is "+name+"\n"); // Here “\n” is the special printing
 //character
System.out.println("Numbers are "+no1+" "+no2);
}
}

Popular Printing Characters
Newline \n Use--- Prints a blank line.
Horizontal Tab \t Use---Prints a horizontal space of 5
Vertical Tab \v Use---Prints a vertical space of 5

OPERATORS
We widely use several operators in our daily language while working with values in
Mathematics and even our day-today life.

Definition: Operators are certain symbols recognized by the compiler which when used
with variables or constants (popularly also known as operands) do a pre-defined action.

Types of Operators are---
 1. Arithmetical Operators
 2. Increment Operators
 3. Bitwise Operators
 4. Logical Operators
 5. Relational Operators
 6. Ternary or Conditional Operator

Arithmetic Operators
The four operators ‘+’, ‘-’, ‘*’ and ‘/’ are known as arithmetic operators. They are used to
perform simple arithmetic calculation in programming as in mathematics. Certain
operators require only one operand (Example- ‘+, - ’) and are hence known as Unary
operator. Other operators that are used with two operands are known as Binary Operator
(‘*, / , +, -’)

Here is an example

class arith_opr
{
public static void main(String args[])
{
float no1,no2;
float sum,product,difference;
float quotient;

no1=17;
no2=02;
sum=no1+no2;
product=no1*no2;
quotient=no1/no2;
difference=no1-no2;

System.out.println("Two Numbers are "+no1+" "+no2);
System.out.println("Sum is " +sum);
System.out.println("Product is "+product);
System.out.println("Quotient is "+quotient);
System.out.println("Difference is "+difference);
}
}

Increment and Decrement Operator
Like any other language such as C++ or C, Java too provides increment and decrement
operator. The purpose of this operator is quite simple i.e. is to increment and decrement
the value of operand by one.

Increment and Decrement operators can be in two forms.

1. Prefix
2. Postfix

 Example ----

class inc_dcr
{
public static void main(String args[])
{
int no=3;
int no2=5;

no++; //Incrementing value by 1
++no; //Incrementing value by 1

no2--;
--no2;

System.out.println("Number 1-" +no);
System.out.println("Number 2-" +no2);
}
}

Now we will study the differences between postfix and prefix in Java. This is the most
important and really tricky part of the concept. Understanding this concept is really
important. You should pay complete attention now.

The difference between prefix and postfix increment and decrement operator is seen only
when we use them in an expression. Have a look at this program.

class pre_post
{
public static void main(String args[])
{
int a,n,s;
a=5;
n=10;

s=++a*n;
System.out.println("After first calculation s= "+s);

a=5;
n=10;
s=0;
s=a++*n;
System.out.println("After final calculation s= "+s);
}
}

There is a significant amount of difference between the two values of s. After observing
this example you might have derived a conclusion. Let me explain in further…

Prefix Increment or Decrement Operator – The prefix Increment or Decrement
operator works on the principle “First change then use.” The value of operand is first
increased or decreased and then the value thus obtained is used in expression for
calculation.

Postfix Increment or Decrement Operator – The postfix Increment or Decrement
operator works on the principle “First use then change”. The value of operand is directly
used in the expression and the value is changed later.

Some examples of this Operator ---

class ex_inc_dcr
{
public static void main(String args[])
{
int a,b,c,d;

a=5;
b=6;
c=11;
d=++a*b---c;

System.out.println(+d);

a=5;
b=6;
c=11;
d=0;
d=a++*b-c--;

System.out.println(+d);
}
}

As you are now familiar with the theory behind the difference in increment and
decrement operator, Let us see the working –

(1).d=++a*b---c;
 a=5;
 b=6;
 c=11;

++a = 6;
b-- = 5(value 6 will be used in expression)
c = 11;

After final calculation--
6*6-11= 36-11=25

(2). a=5;
 b=6;
 c=11;
 d=0;
d=a++*b-c--;

a++ =6(Value used in expression will be 5)
 b =6
 c-- =10(value used in expression will be 11)

5*6-11
30-11=19

Bitwise Operator
The Bitwise operator when used with any operand works at its individual bits. It does not
work with float and double data type.

Logical Operator
Logical operators are generally used with conditional statements and are used to combine
two conditions.
The three Logical Operators---
|| Logical Or
! Logical Not
&& Logical And

Example ---- (You will see their use in the upcoming chapters)
if(a= =1 && b==2)
statements…
If both the conditions are true then only && block is successfully executed
Even if one condition out of the many is true then also the block is successfully executed.
If the condition is wrong then only the statements inside the block are executed.

Relational Operators
As the name clear illustrates the meaning, the relational operators show the relations
between the two variables.
Relational Operators are –

 Greater Than >
 Less Than <
 Greater Than Equal To >=
 Less Than Equal To <=
 Equal To = =
 Not Equal To !=

Ternary Operator
Ternary Operator –
Syntax---- ?:

Conditional Operator is also known as Ternary Operator. It can be used to a substitute of
‘if ’ statement. Observe this program carefully.
class cond_opr
{
public static void main(String args[])
{
int n1,n2,ans,ans2;
n1=5;
n2=10;
ans=(n1<n2)?n1:n2;
ans2=(n1>n2)?n1:n2;

System.out.println(+ans);
System.out.println(+ans2);
}
}

It difficult to guess the use of ternary operator. So here is an explanation.
Look at these statements:

 if n1<n2 then
 Initialize the variable ans with n1
 else
 Initialize the variable ans with n2

This logic can be written as
 ans=(n1<n2)?n1:n2;
As n1 was less than n2 the variable ans was initialized with n1 in the first case. Similarly
the next statement in the program works. Try to reason it out yourself.

Taking Input as Command Line Argument
All the programs we have created till now have variables with there values initialized. (
E.g. int x=4;) Now we will take input from the user using command line arguments. This
is a simple calculator.

class sim_calc
{
public static void main(String args[])
{
int n1,n2,add,sub,mul,div;
n1=Integer.parseInt(args[0]);
n2=Integer.parseInt(args[1]);

add=n1+n2;
sub=n1-n2;
mul=n1*n2;
div=n1/n2;

System.out.println("Sum is "+add);
System.out.println("Diff is "+sub);
System.out.println("Product is "+mul);
System.out.println("Quotient is "+div);
}

Carefully Examine the way in which the program was executed --

Writing a program is easy, but understanding the concept behind it is different. Here is a
short explanation of what we have done. Things will be clearer once you go through the
whole book.
 Line :
n1=Integer.parseInt(args[0]);
The command line arguments are stored in Strings array which is passed as a parameter
in “main”. The Integer.parseInt(parameter) method converts String to Integer. You will
learn more about arguments, String and arrays later.

Remember: Index of Array begins with zero. Hence we have started array with args[0]
i.e. zero index.

Exercise

Q1. What is a literal?
Q2. Explain the hierarchy of Constants.
Q3. Why is Java called a Strictly “typed language” ?
Q4. Explain the term variable?
Q5. How can reserve words cause problem?
Q6. What is the main use of all special printing characters?
Q7. Explain Operators with their proper classification.
Q8. Explain the difference between prefix and postfix increment and decrement operator.
Q9. How is ternary operator useful?
Q10.Design a program that takes an input from the user.

 Understanding Classes and Functions

Introduction
In the first chapter, you studied about OOP, classes, functions and their use in Java
language. As it was just a start you were introduced with certain basic concepts. The most
powerful features were left untouched, e.g. - You had only seen the use of main method
but are yet to discover the concept of using multiple methods in a class other then the
“main”. Now you will explore them in depth. Before going to deep let us revise the
things and start from basics.

A general class declaration with methods---

class name1
{
//public variable declaration

 void methodname()
{
//body of method…
//Anything
}
}

Let us apply this concept and take an example of real world class.

class learn
{
private int x,y,z;
public void input()
{
x=10;
y=15;
}
public void sum()
{
z=x+y;
}
public void print_it()
{
System.out.println(“Answer is =” +z);
}
}

This is a class ‘learn’ with three methods, i.e., input, sum and print. The three functions
are designed to do a specific task. This you can easily figure out by seeing the code. The
input () method initializes the two values, sum () adds them and finally print_it() shows
the answer.

Will the class compile and execute?
Try it on your own, you will find that the class compiles in the DOS environment but
fails to execute. If you will try it in the BlueJ environment, it will compile as well as
execute successfully (This clearly shows the advantage of using BlueJ).

The class did not execute because of the absence of the “main” method. You already
know that the main method is the first one to execute. As soon as we run a java program
the control is transferred to “main”. So we will now add a main method to the
“learn.java” program.

class learn
{
private int x,y,z;
public void input()
{
x=10;
y=15;
}
public void sum()
{
z=x+y;
}
public void print_it()
{
System.out.println(“Answer is =” +z);
}

public static void main(String args[])
{
learn object=new learn();
object.input();
object.sum();
object.print_it();
}
}

Try to compile the program and voila!!! it runs successfully. Now let us see what to these
additional lines mean. We have added the main method to our program. Look at the
following code :

learn object=new learn();
object.input();
object.sum();
object.print_it();

In the first line we created an object (A much talked subject in the first chapter!!). An
object can be simply created by typing---
 learn object;
The object thus created will be null and so we need to instantiate it. The new operator
allocates memory for the object and instantiate it . Constructors are also called at this
point (You will read about constructors in the next chapter).
The three methods are called by using the dot operator. When we call a method the code
inside its block is executed.

The dot operator
The dot operator is used to call methods or access them. It has other use too, which we
will discuss in this chapter later.

Creating “main” in a separate class
You can even create the main method in a separate class, but during compilation you
need to make sure that you compile the class with the “main” method. The program will
thus be like this….

class learn
{
private int x,y,z;
public void input() {
x=10;
y=15;
}
public void sum()
{
z=x+y;
}
public void print_it()
{
System.out.println(“Answer is =” +z);
}
}

class apply
{
public static void main(String args[])
{
learn object=new learn();
object.input();

object.sum();
object.print_it();
}
}

Another use of dot operator
Read the next program carefully and try to figure out its working.

class dot1
{
int x,y,z;
public void sum(){
z=x+y;
}
public void show(){
System.out.print(“The Answer is “+z);
}
}

class apply1
{
public static void main(String args[]){
dot1 object=new dot1();
dot1 object2=new dot1();
object.x=10;
object y=15;
object2.x=5;
object2.y=10;
object.sum();
object.show();
object2.sum();
object2.show();
}}

The output of the program is—

Before you understand this concept properly, a little theory is needed to be understood.

Instance Variable
All variables (Assume int num) are also known as instance variable. This is because of
the fact that each instance or object has its own copy of values for the variable, as you
can easily see in the program mentioned above.
Hence other use of the “dot” operator is to initialize the value of variable for that
instance.

Static keyword --- Earlier you read about the use of “static” keyword when it was
used before the method’s name. This keyword can even be used with variables.
 e.g. — static int num;
 This will make the variable independent of any instance and it will have the same
copy of value for each and every object.

Methods with parameters
Take an example of a method named ‘sum()’. You can see ‘sum()’ with parenthesis. As
they are empty, it shows that the method has no parameters. You can even add some
parameters of your own to serve as an add-on to your method’s functionality. Observe the
following example —

class learn2
{
int n,n2,sum;

public void take(int x,int y)
{
n=x;
n2=y;
}

public void sum()
{
sum=n+n2;
}

public void print()
{
System.out.println("The Sum is"+sum);
}
}

class my_main
{
public static void main(String args[])
{
learn2 obj=new learn2();
obj.take(10,15);
obj.sum();
obj.print();
}
}

In this “learn2” program, the method “take(int x,int y)” has two parameters. These
parameters are supplied with values from the main, when the method is called. The
variables x, y are declared as parameters and you have transferred their values to two
other variables n & n2 respectively.

Remember: Values supplied should match with the data type of parameters.

Methods with a Return Type

You might be still wondering about the use of void and the concept of returning a value.
So here is a jargon buster you desperately need.
So far you have seen that methods can take parameters. Therefore, you can even expect
them to return a value. Instead of using void, you can write something like ‘int, char’ thus
specifying the type of value that you want your method to return.

Example—
 public int process()
{
// body of function
// Other statements
 return value;
}

Go through this example---
class learn3
{
int n,n2;

public void take(int x,int y)
{
n=x;
n=y;
}

public int process()
{
return (n+n2);
}
}

class apply3
{
public static void main(String args[])
{
int sum;
learn3 obj=new learn3();
obj.take(15,25);
sum=obj.process();
System.out.println("The sum is"+sum);
}
}

The method “process” returns the sum of the two variables. In the main method we have
taken the sum in a variable “sum”. The method holds the value 40 like a variable and
hence we don’t have to use several variables. Declaring “sum” is optional, we could even
print the answer directly.
 System.out.println(“The Sum is “+obj.process());

Method Overloading
You were earlier introduced to the concept of “method overloading” in the first chapter
under the caption “polymorphism” (Turn back to refresh the topic once again, if you
can’t recall it!!). After that take a look at the example below—

class meth_over
{
int x=5,y=5,z=0;

public void sum()
{
z=x+y;
System.out.println("Sum is "+z);
}

public void sum(int a,int b)
{
x=a;
y=b;
z=x+y;
System.out.println("Sum is "+z);

}

public int sum(int a)
{
x=a;
z=x+y;
return z;
}
}

class apply4
{
public static void main(String args[])
{
meth_over obj=new meth_over();
obj.sum();
obj.sum(10,12);
System.out.println(+obj.sum(15));
}
}
The Output of the program is---

You might be wondering how this program was able to compile successfully. Another
important question that might arise is “how did the compiler choose to execute a
particular method?”
Resolving all your mind conflicts….
The java run time system decides to execute any of the particular method on the basis of
its parameter(s). In the first call to the method “sum()” we had not specified any
parameter and hence the method “sum()” with no parameter would be executed. In the
second and the third call, the method “sum()” with two parameters and a single parameter
would be executed respectively.

REMEMBER:: The position of method in the program does not matter.

Passing Objects as Parameters
Objects can even be passed as parameters. Have a look at this example

class param
{
int n,n2,sum,mul;

public void take(int x,int y)
{
n=x;
n2=y;
}

public void sum()
{
sum=n+n2;
System.out.println("The Sum is"+sum);
}

public void take2(param obj)
{
n=obj.n;
n2=obj.n2;
}

public void multi()
{
mul=n*n2;
System.out.println("Product is"+mul);
}

}

class apply5
{
public static void main(String args[])
{
param ob=new param();
ob.take(3,7);
ob.sum();
ob.take2(ob);
ob.multi();
}
}

We have defined a method “take2” that declares an object named obj as parameter. We
have passed ob to our method. The method “take2” automatically gets 3,7 as values for n
and n2.

Passing Values to methods and Constructors
Now you are familiar with passing values to methods. We have passed integers(data
types) as well as objects. These are two different ways of supplying values to methods.
Classified under these two titles -
1.Pass by Value
2.Pass by Address or Reference

Pass by Value-When we pass a data type(like a variable “num” of int, float or any other
type of data) to a method or some constant values like(15,10). They are all passed by
value. A copy of variable’s value is passed to the receiving method and hence any
changes made to the values do not affect the actual variables.

Consider this example---

class pass_by_val
{
int n,n2;

public void get(int x,int y)
{
x=x*x; //Changing the values of passed arguments
y=y*y; //Changing the values of passed arguments
}

}

class apply6
{
public static void main(String args[])
{

int a,b;
a=1;
b=2;
System.out.println("Initial Values of a & b "+a+" "+b);

pass_by_val obj=new pass_by_val();
obj.get(a,b);

System.out.println("Final Values "+a+" "+b);
}

}

Output----

Pass by Reference
Objects are always passed by reference. When we pass a value by reference, the reference
or the memory address of the variables is passed. Thus any changes made to the argument
causes a change in the values which we pass.

Demonstrating Pass by Reference---

class pass_by_ref
{
int n,n2;
public void get(int a,int b)
{
n=a;
n2=b;
}

public void doubleit(pass_by_ref temp)
{
temp.n=temp.n*2;
temp.n2=temp.n2*2;
}

}

class apply7
{
public static void main(String args[])

{

int x=5,y=10;

pass_by_ref obj=new pass_by_ref();
obj.get(x,y); //Pass by Value

System.out.println("Initial Values are-- ");
System.out.println(+obj.n);
System.out.println(+obj.n2);

obj.doubleit(obj); //Pass by Reference
System.out.println("Final Values are");
System.out.println(+obj.n);
System.out.println(+obj.n2);
}
}

Pure & Impure Functions
Pure Functions -- Pure functions do not modify their arguments or output. The result
of a pure function call is the return value.
Impure Functions—Just opposite to pure function.

Recursion
When a method calls itself, it is known as recursion. This phenomenon may look weird
but it becomes really helpful in some conditions. The power of recursion can be
demonstrated by taking an example of a class that calculates factorial of a number. If you
are unfamiliar with the term “factorial”, here is the description with an example.
 No=5
 Factorial=5*4*3*2*1
You can deduce from this example, the factorial of a number ‘N’ is the product of all
natural numbers descending from ‘N’ till 1.

class fact
{

int ans;

public int take(int no)
{
if(no==1)
return 1;
ans=take(no-1)*no;
return ans;
}
}

class apply8
{
public static void main(String args[])
{
fact obj=new fact();
System.out.println(+obj.take(5));
}
}

The method calls itself repeatedly and calculates the factorial. If you want to see the
stepwise calculation of the factorial, insert a print statement in the method. You will then
understand its working better.

Use of “this” keyword
The “this” keyword refers to the object by which a method was called. Have a look at this
piece of class.

// This is a wrong code…
class no_this
{
int a,b;

void take(int a,int b)
{
a=a;
b=b;
}
The mistake in this program can be easily pointed out. We cannot use the same name for
the instance variables and the variables which are declared as parameters. The reason
being the instance variables are hidden when we use parameters with the same name. If
we are determined to use the same name, then the “this” keyword comes to rescue. Now
look at a class named “with_this”

 class with_this
{

int n,n2;
int sm;
public void get(int n,int n2)
{
this.n=n;
this.n2=n2;
}

public void sum()
{
sm=n+n2;
System.out.println("Sum is "+sm);
}

}

class apply9
{
public static void main(String args[])
{
with_this obj=new with_this();
obj.get(10,12);
obj.sum();
}
}

We can use the “this” keyword even if we have used different names for the parameters
and the instance variable.

Exercise –

Q1. What is the importance of class in Java?
Q2. What is the role of “main” method in the execution of programs?
Q3. Explain the two uses of dot operator.
Q4. Why is the main method preceded by the keyword static?
Q5. A method can be written even without using a return type. What is the benefit if we
use them?
Q6. Explain method overloading and demonstrate it with the help of an example.
Q7. State the difference between “pass by value” and “pass by reference”.
Q8. State the use of ‘this’ keyword.
Q9. Explain recursion with the help of an example.
Q10.Write about pure and impure function.

 Constructors

You have already studied in depth about methods, classes and Java. Now we will study
about “Constructors”, which are an important part of java programs.

Definition-A constructor of a class is a special function which is automatically called
when the object of the class is called. A constructor makes our work easier by initializing
objects at their creation. The most important question is how? We will now study it.

Special Features of Constructors—
These are some really important characteristics of Constructors. Read them very
carefully.

1. Constructors have the same name as that of class.
2. They don’t have any return type (void, int).
3. Constructors cannot be inherited. “Super” keyword is used to call the parent class

constructor.

 Declaration of Constructors---
 class any
{
public any() //Constructor
{
/* Body of Constructor
Body continues ….
*/
}
}

Lets study a simple example of a class “Calc”.

class calc
{
int n,n2,sum;
public calc() //Class Constructors
{
n=15;
n2=20;
}

public void sum()
{
sum=n+n2;
System.out.println("Sum is "+sum);
}
}

class apply10
{
public static void main(String args[])
{
calc obj=new calc(); //Constructor called....
obj.sum();
}
}

Have a look at the constructor’s body, you can see two statements.
{
n=15;
n2=20;
}
Here when the constructor was called the two variables were automatically initialized.
Thus we mentioned earlier that “A constructor makes our work easier by initializing
objects at their creation.”

Two Types of Constructors---
1.Default Constructor.
2.Parameterized Constructor

Default Constructor---A “default constructor” is a constructor with no parameters.(You
are already familiar with the concepts of parameters. The class constructed in the
previous page contains a default constructor “calc”.

Parameterized Constructor---A “parameterized constructor” is a constructor with
parameters. The way of declaring and supplying parameters is same as that with methods.
Study this example—

class cons_param
{

int n,n2;
int sum,sub,mul,div;
public cons_param(int x,int y)
{
n=x;
n2=y;
}

public void opr()
{
sum=n+n2;
sub=n-n2;
mul=n*n2;

div=n/n2;

System.out.printn("Sum is "+sum);
System.out.printn("Difference is "+sub);
System.out.printn("Product is "+mul);
System.out.printn("Quotient is "+div);
}
}

class apply11
{
public static void main(String args[])
{
cons_param obj=new cons_param(6,17);
obj.opr();
}
}

Constructor Overloading---
The basic concept underneath “Constructor Overloading” is same as that of method
overloading. The difference lies on the concept that here we are working with
constructors and not with methods.
Lets see our next example of the apply series.

class overload
{
int n=0,n2=0;

public overload()
{
n=1;

n2=2;
System.out.println("n & n2 "+n+" "+n2);
}

public overload(int x)
{
n=x;
System.out.println("n & n2 "+n+" "+n2);
}

public overload(int x,int y)
{
n=x;
n2=y;
System.out.println("n & n2 "+n+" "+n2);
}
}

class apply12
{
public static void main(String args[])
{

overload obj=new overload();

overload obj1=new overload(5);

overload obj2=new overload(10,15);

}
}

Exercises

Q1.What is a constructor?
Q2.How does a constructor differ from a method?
Q3.Explain the two types of constructors that can be created by Java.
Q4.What is the general use of constructor?
Q5.Differentiate between constructor and method overloading”.

 Loops and Conditional Statements

Look at any program you have created till now. You can see that the execution begins
with the main method. Other functions are called sequentially and after the execution of
each and every statement, the program ultimately terminates. The “Real World” programs
are entirely different. They respond to users actions. Explaining it in a better and
technical way, they execute in a conditional manner.

Take an example our world, we interact with our environment and our behavior is
determined by the conditions around us. You laugh at a clown’s joke, but don’t even dare
to smile in front of your principal! This is what a conditional response. We can also
design programs in such a way so that they take a step according to the conditions
(Input).
Imagine that you have created a tax calculating program. According to the different pay
scales, taxes which are to be paid differ. A man earning a meager Rs.4000 a month has a
total annual pay which amounts negligible in comparison to the tax paid by a person
earning Rs.300000 a month!! Thus your program should be capable enough to compute
the tax according to the condition i.e. the basic monthly pay. Like many other languages
Java too handles condition using if-else and switch statements.

Conditional Statements---

1. if-else statement
2. switch

If Statement
If statement’s general format….

If (condition)
{
//Statements…...
}

Let’s study this example---

class cond
{
pubic static void main(String args[])
{
int inp=10;
if(inp==06)
{
System.out.println("Hello Special Number");
}
System.out.println("Nothing Special");
}
}

As the variable “inp” is initialized with 10, and the condition (inp==6) is false. The
statements inside the “if block” are not executed. Thus you can see that our program is
executing in a conditional manner.

If-Else Statements
Read this statement carefully “If the weather is bad I will not visit you else I will surely
come”. After reading this statement you can easily understand the context in which “else”
is used.

class cond2
{
public static void main(String args[])
{
int x;
x=Integer.parseInt(args[0]);
if(x==1)
System.out.println("You are the no. one");
else
Sysem.out.println("You are not the no. one");
}
}

This program is unable to demonstrate the power of “else”. The reason lies on the fact
that this program we have not used else with if. The next example will do this.

If-else If

class cond3
{
public static void main(String args[])
{
int inp;
inp=Integer.parseInt(args[0]);

if(inp==1)
System.out.println("You the No. 1");

else
if(inp==2)
System.out.println("No.------ 2");
else
if(inp==3)
System.out.println("No.-------3");
else
System.out.println("You are not among the top three");
}
}

Look at the command prompt, the code executes strictly according to the condition. If
the input is 1,2 and 3 the output is unique, but for all other inputs the program prints the
same Line "You are not among the top three". You can see the use of “if-else” together.

REMEMBER::: You can even construct the program mentioned above without else.
The use of “else” just makes our program readable.

Working with “&’ Operator
Imagine a garments store where you get discount and points for your patronage on your
shopping. The more you purchase the more “ discount and points” you are awarded.

Look at a program developed to assist the Shopkeeper

class cond4
{
int money;
int dis;
int points;
public cond4(int temp)
{
money=temp;
}
public void calc()
{

if(money>0 && money<=1000)
{
dis=3*money/100;
points=money/10;
System.out.println("Discount Offered is "+dis);
System.out.println("Points Earned are "+points);
}
else
if(money>1000 && money<=3000)
{
dis=8*money/100;
points=money/10;
System.out.println("Discount Offered is "+dis);
System.out.println("Points Earned are "+points);
}
else
if(money>3000 && money<=5000)
{
dis=15*money/100;
points=money/10;
System.out.println("Discount Offered is "+dis);
System.out.println("Points Earned are "+points);
}
}
}

class store
{
public static void main(String args[])
{
int val;
val=Integer.parseInt(args[0]);

cond4 obj=new cond4(val);
obj.calc();
}
}

By using the “&” operator we can successfully work with a range of values.
Similarly if needed, we can even use Or(||) and Not (!) operator.

Menu Based Programs
You can use if-else to design menu based program. A menu based program has an ability
to perform a variety of tasks but it asks the users input and carries out a particular job.
Example---Calculator

Nested If statements
A nested if statement contains another if statement inside its block. Look at this format.

if (condition)
{
if(condition2)
{
/* Statements…………….
 Ending */
}
// Some extra statements
}

Nested ifs can sometimes be used as a substitute to the “&&” operator. Example

if (x==1 && x== 2)
System.out.println (“Condition satisfied”);

 OR

if (x==)
{
if(x==2)
System.out.println(“Condition satisfied”);
An example demonstrating use of nested ifs.

/* This program gives you a compliment according to your marks and behavior*/

class nested
{
public static void main(String args[])
{
int marks=64;
int behm=10;

if(marks>=80 && marks<=100)
{
if(behm>=8 && behm<=10)
System.out.println("You are a Good Boy/Girl...KEEP IT UP!!!");
else

if(behm>=5 && behm<8)
System.out.println("You are Really good in studies but can work on you behavior");
else
System.out.println("Yu are good in studies...Need to work a lot on your behavior");
}
else
if(marks>=50 && marks<80)
{
if(behm>=8 && behm<=10)
System.out.println("Average. You are a Good Boy/Girl...KEEP IT UP!!!");
else
if(behm>=5 && behm<8)
System.out.println("You are average in studies but can work on you behavior");
else
System.out.println("Average in Studies...Need to work a lot on your behavior");
}
else
System.out.println("Improve in your studies..No behavior marks ");
}
}.

Output---

If we edit our input to these figures.

Input -
marks=84;
behm=7;

The Output will be-----

Switch Keyword
Just like the “if-else” statement, we ca even use “switch” for conditional execution of our
program.

REMEMEBR:: We don’t use switch very often as it is not as versatile as “if”. The
reason for the limitation of “switch” is its inability to work with a range of values.

General syntax---

switch (data type to check for a condition)
{
case cond1
{
Action;
break;
}
case cond2
{
Action;
break;
}
case n;
{
Action;
break;
}
default
{
Action;
}

A simple program that if a character is a vowel or consonant.

class swtch
{
public static void main(String args[])

{
int inp='i';

switch (inp)
{
case 'a':
System.out.println("A vowel");
break;

case 'e':
System.out.println("A vowel");
break;

case 'i':
System.out.println("A vowel");
break;

case 'o':
System.out.println("A vowel");
break;

case 'u':
System.out.println("A vowel");
break;

default:
System.out.println("A Consonant");
}
}
}

It is easy to judge the meaning of break. The “break” keyword is used to get out of a
switch condition. The “break” keyword is widely used in other conditions too. We will
discuss about it later in this chapter.

Loops ---
Sometimes we need to repeat an action again and again. Imagine writing a program that
prints the line “HAPPY BIRTHDAY” thousand times. Until you use loops, writing such
a program is fairly impossible. Java provides us with three kinds of Loops—

1. while
2. for
3. do-while

while
You will often use while loop to repeat statements in a Java program. After going through
each and every type of loop you will find that it is best to use this loop when—
 1.We are not sure about the number of times we have to repeat a statement.
 2. We are not sure if our loop will even execute a single time.

Syntax for while loop

while(condition)
{
// Statements;
every thing we ever wanted to execute
}

Example
/*A program to print a message 1000 times */

class whloop
{
public static void main(String args[])
{
int c=1;

while(c<=1000)
{
System.out.println("HAPPY B'DAY");
c++;
}

}
}

Compile and Execute this program, it will fill your screen with that message. If you will
print the message using System.out.print, a nice screen full of message will be printed.
Here is a screenshot

Now you need to understand the internal working of the program. Look at these
statements—

int c=1;
while(c<=1000)
{
System.out.println("HAPPY
B'DAY");
c++;
}

Here we have defined a condition (c<=1000). The Loop will terminate if this condition
goes wrong . We have also declared an integer c which has an initial value of 1. As the
loop prints the message, the value of c too increases(Remember the use of increment
operator studied in chapter-2) and finally causes the loop to fail when its value changes to
thousand.

do-while
The do-while loop can also be used to repeat a set of statements.
Syntax---

do
{
Anything you wish!!!
}
while(condition);

If you will carefully examine the structure of do-while loop, you will find that the
condition was tested after the execution was done once. Thus we come to a conclusion
that the do-while executes the statement(s) at least once.

 /* A program to print a message 1000 times. */
class dowhloop
{
public static void main(String args[])
{
int c=1;
do
{
System.out.println(“HAPPY B’DAY”);
c++;
}
while(c<=1000);
}
}

for loop
The “for” loop is most widely used for repeating a set of statements. The credit goes to
the clear cut interface defined by it.

Syntax—

for(initial value of counter; condition; update counter)
{
// Statements
}

For using for loop you should be clear about the fact-“ How many times exactly will my
program actually execute?”

/* A program to print a message 1000 times */

class forloop
{
public static void main(String args[])
{
int c;
for(c=1;c<=1000;c++)
System.out.println(“HAPPY B’DAY”);
}
}

Factorial of a number—

You have already studied about the concept of factorial, when we studied about
recursion. So the definition of factorial is clear, now we just need to write a program
using loops. Developing logic is the most important part which you will be able to do it
yourself after some practice.

Factorial-
class fact
{
public static void main(String args[])
{
int no,c;
no=Integer.parseInt(args[0]);

for(c=no;c>1;c--)
{
no=no*(c-1);
}
System.out.println(" Factorial is "+no);
}
}

Writing the program using while loop.

class fact
{

public static void main(String args[])
{
int no,c;
no=Integer.parseInt(args[0]);
c=no;

while(c>1)
{
no=no*(c-1);
c--;
}
}
}

Writing the program using do-while loop

class fact
{
public static void main(String args[])
{
int no,c;
no=Integer.parseInt(args[0]);
c=no;

do
{
no=no*(c-1);
c--;
}
while(c<1);

}
}

Two keywords..

1. break
2. continue

(1).The “break” keyword is used to get out of a loop. Usually we break with an “if”
statement, so the loop terminates only at a certain condition.
Read this program for a clearer understanding, this program uses the “io” package and
gets input from user. I have used the InputStreamReader and BufferedReader classes.
You are still unfamiliar with these concepts. So rather on concentrating on them and
getting carried away better have an eye on the loop and break. The program is
commented extensively to assist you.

import java.io.*; //Importing io package to help you get the input
class limit_no

{
public static void main(String args[]) throws IOException
{
int no; // Variable that will repeatedly take the input from user
int c=5;
InputStreamReader rd=new InputStreamReader(System.in); //Lines help us to take an
//input
BufferedReader inp=new BufferedReader(rd);// Lines help us to take an input

while(c==5) // Loop should not terminate until c=5
{
System.out.println("Enter your marks"); // Message that asks users for an input
String v1=inp.readLine();
no=Integer.parseInt(v1); //Variable "no" is finally initialized with the value entered by
//user
if(no<0 || no>100) //Loop will still terminate if this condition gets false.
break;
}
System.out.println("While Loop Terminated");
}
}

Have a look at the output of the terminal window----

As soon as a digit greater than 100 was entered the program terminates. This is all
because of the “break” and the “if” condition associated with the code. It is clear that the
loop will only terminate when c is not equals to five. As c was initialized with 5 earlier
and no tampering is done on it, without the “break” keyword the loop will run infinitely.

 (2).continue: The “continue” keyword is used to force an execution of loop. Let's study
an example similar to the previous one.

import java.io.*; //Importing io package to help you get the input
class limit_no2 // Variable that will repeatedly take the input from user
{

public static void main(String args[]) throws IOException
{
int no;
int c=1;
int x=1;
InputStreamReader rd=new InputStreamReader(System.in); //Lines to help us to take an
input
BufferedReader inp=new BufferedReader(rd);

while(x<=3) //while loop will cause the block of code to execute thrice
{
System.out.println("Enter a Number"); //Message to be printed
String v1=inp.readLine();
no=Integer.parseInt(v1);
x++; //Update value of x,thus regulating the times loop executes
if(no==5) // Force the execution of Loop
continue;
System.out.println("This message will not be printed in an exceptional case"); // This
//message will not be executed if number entered is equal to 5
}

}
}

Have a careful look at the output while comparing it with the input. You will find that
when the input was 5, the execution of loop was continued and hence the message "This
message will not be printed in an exceptional case" is not printed.

Examples

To achieve perfection in loops and if statements, you need to practice lots of programs.
The more problems you solve, the better your skills become. I recommend that you
should first try them out independently and then look at the solution. It might be possible
that your logic was even better than mine.

Note: All of the programs mentioned in this chapter were written by me initially in C++.
As most of you would be unfamiliar with this language, I have changed the code to Java.
You must know that the logic remains same in programming, just the way of
implementation defer.

Example 1.
/* Print pattern
12345
23456
34567
45678
56789 */
//author Nitish Upreti

class pat1
{
public static void main(String args[])
{
int c,c1,t;

for(c=1;c<=5;c++)
{
t=c;
for(c1=c;c1<=t+4;c1++)
System.out.print(+c1);
System.out.println();
}
}
}

Example 2
/* Printing a pattern
a
bb
bb
ccc
ccc
ccc

dddd
dddd
dddd
dddd /*
//author Nitish Upreti
// Try this program after reading the chapter on Arrays
class pat2
{
public static void main(String args[])
{
 char ch[]={' ','a','b','c','d'};
 int c,c1,c2,n=1;

 for(c=1;c<=4;c++)
 {
 for(c1=1;c1<=n;c1++)
 {
 for(c2=1;c2<=n;c2++)
 System.out.print(ch[n]);
 System.out.println();
 }
 n=n+1;
 }

 }
 }

 Example 3
 /* A program that prints the following pattern
 1234554321
1234 4321
 123 321
 12 21
 1 1 */
 // author Nitish Upreti

class pat3
{
public static void main(String args[])
{
int c,c1,i=5,d=5,c2,s,g=0;
for(c=1;c<=5;c++)
{
for(c1=1;c1<=i;c1++)
System.out.print(+c1);

i=i-1;

for(s=1;s<=g;s++)
System.out.print(" ");
g=g+2;

for(c2=d;c2>=1;c2--)
System.out.print(+c2);
d=d-1;
System.out.println();
}
}
}

Example 4
/* A program that prints the following pattern

class pat4
{

public static void main(String args[])

{
 int i,j,k,l,s=4;
 char ch[]={' ','I','N','D','I','A'};

 for(i=1;i<=5;i++)
 {
 for(j=1;j<=s;j++)
 {
 System.out.print(" ");
}
s=s-1;
for(k=1;k<=i;k++)
{
System.out.print(ch[k]);
}
for(l=i;l>1;l--)
{
System.out.print(ch[l-1]);
}
System.out.println("\n");

 }
 }
 }

 Example 5.
// A program to print the following pattern
 /* 7777777
 55555
 333
 1
 333
 55555
 7777777 /*
// author Nitish Upreti

class pat5
{
public static void main(String args[])
{
int c,c1,s,n=7;

for(c=1;c<=4;c++)
{

for(s=1;s<c;s++)
System.out.print(" ");

for(c1=1;c1<=n;c1++)
System.out.print(+n);

n=n-2;
System.out.println();
}

n=3;
for(c=3;c>=1;c--)
{

for(s=1;s<c;s++)
System.out.print(" ");

for(c1=1;c1<=n;c1++)
System.out.print(+n);

n=n+2;
System.out.println();

}
}
}

Example 6.
// A program to print the following pattern
/*
54321
5432
543
54
5
/*
// author Nitish Upreti

class pat6
{
 public static void main(String args[])
{
 int c,c1;
 for(c=1;c<=5;c++)
 {
 for(c1=5;c1>=c;c1--)
 {
 System.out.print(+c1);
 }
 System.out.println();
 }
 } }

Example 7.
/* A program to print the following pattern

class pat7
{
public static void main(String args[])
{
 int c,c1,c2,c3;
 for(c=1;c<=5;c++)
 {
 for(c1=5;c1>=c;c1--)

 {
 System.out.print(" ");
 }

 for(c2=1;c2<=c;c2++)
{
 System.out.print("*");
 }
 System.out.println();
 }
 }
 }

Example 8
/* A program to print the following pattern

 ZBBBBBBBB
 AZBBBBBBB
 AAZBBBBBB
 AAAZBBBBB
 AAAAZBBBB
 AAAAAZBBB
 AAAAAAZBB
 AAAAAAAZB
 AAAAAAAAZ */
// author Nitish Upreti

class arr_pat
{
int c,c1,mid=1;
char arr[]={'A', 'Z','B'};

arr_pat()
{
for(c=1;c<=9;c++)
{
for(c1=1;c1<=9;c1++)
{
if(c==c1)
{
System.out.print(arr[1]);
mid=0;
if(mid==0)
System.out.print(arr[2]);
}
else

System.out.print(arr[0]);
}
mid=1;
System.out.println();
}
}
}

class xyz
{
public static void main(String args[])
{
arr_pat obj=new arr_pat();
}
}

Exercises

Q1. What does conditional execution of a program mean?
Q2. Explain the use of ‘if’ statement with an example.
Q3. How is the “and” (&&) operator used with ‘if’ statement?
Q4. Design a menu based calculator using ‘if’ statement.
Q5. State the difference between ‘if’ and ‘switch’ statement.
Q6. What is the difference between while and do-while loop?
Q7. What advantage does ‘for’ loop holds over ‘while’ loop?
Q8. Describe ‘break’ and ‘continue’ statement.
Q9. State the use of counters in loop.
Q10. Write a program that prints the following patterns on the screen

 Basic Exception Handling in Java

Java provides us an excellent exception management system, hence we can protect our
programs from any run time errors. This robustness is achieved through keywords like
“try, catch, throw and throws”. The contents of this chapter are out of course if you
compare them with the ICSE syllabus, but a basic knowledge will really help you in
understanding the forthcoming chapters.

Exception
Exception is some unusual condition that sometimes generates during the execution of
our code. The reason may be an invalid input, no input and even violation of some
security features. If we don’t handle the exception ourselves then the Java Run Time
automatically handles and reports the exception, finally terminating the program. This
can be embarrassing if you are writing a professional program (Take your own project as
an example). Thus handling some exceptional condition is really important.

Using try and catch
The two keywords “try and catch” are extremely useful for handling run time exception.
If we suspect a part of code to be prone to exceptions, we can enclose it within the try
block. If an exception occurs, it is handled by the catch block as directed earlier by us.
We can even manually throw an exception using “throw and throws” keyword.
Syntax—
try
{
 // Statements
// Code
}
catch(ExcepionType obj)
{
//Catch block that handles exception
// Any suitable actions that are needed to be taken
}
Look at this program that will generate an error. Here we have not used try catch to
protect our code from exceptions.

class airtexc2
{
public static void main(String args[])
{
int no,no2,ans;
no=10;
no2=0;
ans=no/no2;
System.out.println("Exception Occurred");
}
}

Output—

Line no 8: ans=no/no2; caused a divide by zero exception error that resulted in an
abnormal termination of the program. The line “System.out.println("Exception
Occurred");” was not executed.

Now the same program is written using try and catch to handle exception.

class airtexc
{
public static void main(String args[])
{
int no,no2,ans;
no=10;
no2=0;
try
{
System.out.println("Try block begins");
ans=no/no2;
}
catch(ArithmeticException e)
{
System.out.println(" Sorry!!An Exception occured");
System.out.println(" Exception Details"+e);
}
System.out.println("EXCEPTION DETAIL PRINTED");
}
}

Output----

After looking at the code and the output of the program, some conclusions can be drawn

1. Program does not terminate in an exceptional condition if we use “try-catch”
statements. This is proved by the fact that the line
“System.out.println("EXCEPTION DETAIL PRINTED");” was executed after the
exception occurred.

2. We can print the details of exception by simply printing the exception’s object i.e.
is “e”.

Let us imagine that we are writing a program which manipulates digits in arrays (You
will be learning about arrays in the last chapter). We suspect that there might be a
condition where our program can generate.
(i). ArithmeticException
(ii). ArrayIndexOutOfBoundsException
How will be the two exceptional cases handled simultaneously? The answer to this
problem is multiple catch blocks.

Syntax-
try
{
// Block of code to be inspected for errors
// Statements
}
catch(Exception1 obj)
{
// Handling exceptions
// All statements
}
catch(Exception2 obj)
{
// Handling exceptions
// All statements
}

throw and throws keywords---

throw-
Till now we have been handling exceptions automatically thrown by java runtime system
due to certain lines in our code. The “throw” keyword is used to manually throw an
exception. As soon as the interpreter encounters the line with the throw keywords, it
searches for the catch statement of the try block in which the “throw” keyword is
enclosed. If no catch block is found then the default exception handler handles the
exception and terminates the program.

class thrw
{
public static void main(String args[])
{
try
{
System.out.println("Try block's execution begins");
throw new ArithmeticException ();
}
catch(ArithmeticException obj)
{
System.out.println("Inside the catch block");
System.out.println("Exception detail---"+obj);
}
}
}

We have created an object of ArithmeticException using new operator. The catch block
handles the exception.

throws
If we construct a method that throws an exception which it does not handle, the keyword
“throws” warns the calling method of the exception.
return_type method(parameter list) throws exception
{
// Method’s body
// Other statements
}

A straightforward and clear example will be a simple program that takes some input from
the user.

import java.io.*;
class trws
{
public static void main(String args[]) throws IOException /. Use of “throws” keyword
{
int no;

InputStreamReader rd=new InputStreamReader(System.in);
BufferedReader inp=new BufferedReader(rd);

System.out.println("Enter a number");
String v1=inp.readLine();
no=Integer.parseInt(v1);

System.out.println("Multiplying a number");
no=no*no;
System.out.println("Square of the no. is "+no);
}
}

Exercise

Q1. What is an exception?
Q2. Why is exception handling a vital aspect of successful programming?
Q3. Explain the use of try-catch statements.
Q4. Which two other keywords other than ‘try-catch’ are used to handle exceptions?
Q5. When do these exceptional conditions occur?
 (i). ArithmeticException
 (ii). ArrayIndexOutOfBoundsException

 Using Library Classes
Package
In Java, you can group a number of classes into a single unit known as packages which
also act as a container for a group of classes.

Example---
There are several inbuilt java packages. They contain groups of classes that help us in
writing our program.
java.io Java Input-Output package
java.lang Java language package

Defining a Package
A programmer, if desires can create his own package. This can be really helpful in certain
conditions.
Syntax—
package name;

Remember: A class that defines itself inside a package “pack” should be placed inside a
folder (directory) “pack”.
In this way a class hierarchy can be built. A hierarchy of packages and even folders can
thus be created.

Study this example for a better knowledge of packages.

package first;

class school
{
String name;
int marks;

public school()
{
name="Priyanka";
marks=94;
}

public void show()
{
System.out.println("Printing Student's name and marks");
System.out.println(“Name is "+name);
System.out.println(name +"'s"+" marks are "+marks);
}
}

class sch
{
public static void main(String args[])
{
school obj=new school();
obj.show();
}
}

In this example we have constructed a package named first that contains two classes
named school and sch. Save this program as “sch.java” under a folder “first”. Use the cd
command in DOS to enter the directory “first”. Compile the program in the usual way.
 javac sch.java;
For executing the program, move above the “first” directory i.e. in the folder containing
the “first” directory using the command “cd..”. Then execute the program in this way----
 java first.sch
As the class sch is in the package first, we can not compile the program using the normal
way.
 java sch // Wrong way

This screenshot will certainly help a lot.

Classpath Woes
It becomes difficult for Java to search a package. As packages are as good as folders, it
will be impossible for java to recognize the location of our package. In the example
mentioned above we successfully created a package “first” and executed the code. This
is because at the time of execution we were in a directory (Java Prgs) that was just above
“first” in the folder’s hierarchy. By default, java searches the specified package in the
subdirectory of the folder in which we are working.

If you are not in the directory that is just above the “package” directory (Have a look at
the screenshot that “Java Prgs” is the directory in this case), you have to specify a

classpath to java runtime system. A classpath simply informs the runtime system about
the location of our package.

Importing Package
Look at the program in the previous chapter that demonstrates the use of “throws”
keyword. We have imported the “io” package in the program.
 The Line goes like this…
import java.io.*;
This might give you some understanding of using a particular package. The keyword
“import” helps us in this.
I have created three packages named highest, higher and high. Suppose that “higher” lies
inside the package “highest”. Higher too contains a package “high”. The high package
contains three classes. Let their names be first, second and third.
If you want to import the class “second.java”, you will write-
 import highest.higher.high.second;
 There is an alternative to this method—
 import highest.higher.high.*;
If you use the “import” statement in this way, all the classes will be imported including
“second.java” which we desire to import. Can you guess the reason behind it? It is due to
the “*”. Here “*” works as a wild card character that represents all the classes.

General Syntax—
import package1.package2.package‘n’.classname;

A further study of java.io package
The “java.io” package contains classes that support java’s input & output system. The io
package holds immense value as it contains several classes like “InputStreamReader” &
“BufferedReader”. Thus the io package must be imported in each and every program for
taking input from the console.

Once again have a look at an example that takes an input from its user.

import java.io.*; //importing all classes that are in the java.io package

class demoinp
{
public static void main(String args[]) throws IOException // "throws" keyword is used to
// handle exception
{
String name; //An object of class String that takes a series of characters as an input
int marks; // Variable that accepts the marks of user

InputStreamReader rd=new InputStreamReader(System.in); // Creating an object of the
//class InputStreamReader

BufferedReader inp=new BufferedReader(rd); // Creating an object of the class
// BufferedReader

System.out.println("Enter your Profile");

System.out.println("Enter your name"); // Message to the user
name=inp.readLine(); // "name" getting the input

System.out.println("Enter your marks");
String v1=inp.readLine(); // Readline method used
marks=Integer.parseInt(v1); // variable “mark” getting the input

if(marks>= 75 && marks<=100)
System.out.println("Well Done!!!");
else
if(marks>=50 && marks<75)
System.out.println("Good,You can improve");
else
if(marks>=0 && marks<50)
System.out.println("You need to really work hard!!");
else
System.out.println("Invalid Input");
}
}
Line 1:
Importing the io package.

Line 11 & 13:
We have created objects of two classes, InputStreamReader and BufferedReader. These
classes help us to get an input as follows -
1. InputStreamReader – Input Stream that translates bytes to characters
2. BufferedReader ------BufferedReader wraps “System.in”, thus creating a character
stream.

Line 19:
Input is always received by the Java “Input Stream” in the form of a String (Strings are a
series of characters & digits, e-g. “Hello”, “agh1”, “12”. The variable “name” gets the
input with the help of the readLine() function.

Line 22 & 23:
In the Line 22, we take the input in the form of String by the readLine() method. A
variable “v1” gets the input. Then in the next line we have a statement that causes the
variable “marks” to take the input as an Integer. A method Integer.parseInt(String name)
accomplishes this task.

Remember:: There are two types of Streams in Java—
1. Byte Stream
2. Character Stream

The byte stream is used for reading & writing binary data while the
character Streams handle input & output of characters. Although at the
basic level everything is in bytes.

Access Protection
Using three access modifiers “public, private & protected” we can control the visibility
of our members in and out of the package and class.

Public
Inside Class Visible
Outside Class Visible
Inside Package Visible
Outside Package Visible

Private
Inside Class Visible
Outside Class Not-Visible
Inside Package Not-Visible
Outside Package Not Visible

Protected
Inside Class Visible
Inside Package Visible
Outside Package(subclass) Visible
Outside Package(non-subclass) Non-Visible

Wrapper Class
Wrapper class is present in the “java.lang” package. Wrapper class was introduced to
treat primitives like int, double, float, byte, short etc., as Objects.
 For example. Consider this following code:

 //This is correct
 Vector vec = new Vector();
 vec.addElement("Nitish");

 //This is wrong, produces Compiler error!!
 Vector vec = new Vector();
 int num = 5;
 vec.addElement(num);

 Why the Compiler is complaining? This is because ‘int' is not
 an object like String, it's a primitive.

 So to make sure int, short, byte, long, float, double, char are
 treated as Objects , Wrapper classes where introduced.
 If there is no Wrapper class , you can't use primitives when using

 Collections FrameWork.
 Collections FrameWork (java.util)form the main part of Java.They have

 Classes like Vector, List, Date, Map, HashSet Iterator, etc., which
 are used for storing, sorting, and various functions.
 What in C++ they call STL(Standard Template Library), they call it
 as 'Collections Framework' in Java.

 So for each primitive there is a corresponding Wrapper class. For int ->Integer, float -
 >Float,double->Double
 etc., A Wrapper class wraps around a primitive and makes it an Object.

 For eg.,

 int primInt = 23;
 Integer wrapInt = new Integer(primInt);
 Vector vec = new Vector();
 vec.addElement(wrapInt);

Since Integer is an Object , it can be added to Vector. As you can see the Integer class
wraps around the primitive 'int' variable, so it's called a Wrapper class.
Similarly you can change float, double, byte, etc., as Objects using Wrapper class.

Exercise

Q1. What is a package in Java?
Q2. Name some built in java packages with their uses.
Q3. How does a package help us in organization of our classes?
Q4. How does the Java Runtime System searches for a required package?
Q5. Explain the use of ‘import’ statement with the help of an example.
Q6. Write a program that takes the input from the user. Describe the classes you have
 used to get the input.
Q7 How access modifiers control the visibility in a package?
Q8. Explain wrapper class.
Q9. How is bytes stream different from Character stream?
Q10. How can we import all the classes of a package in our program?

 String Handling in Java

In the second chapter you read about several data types. The concept of “Strings” was left
unattended, as they are entirely different from any other conventional data type. In this
chapter we shall study about each and every aspect of String handling.

What is a String?
You are already familiar with the name of “java.lang” package. This package contains
many classes that support various runtime processes. This package is really important
which you can understand after reading this---
“The java.lang package is so vital for the execution of java programs that it is imported
automatically in our code, thus we don’t have to do it ourselves manually each & every
time”.
String is a class contained by this package. Using the object of this class we can
manipulate or work with series of characters.

A similar class-StringBuffer
It’s not possible to edit the contents of String once initialized. Example —
String word=“Matter”
The contents of String can be changed completely, i.e. String ‘word’ can contain values
such as “solid”, “type” or “af12” etc. You might now wonder, why earlier it was
mentioned to be ‘non-editable’? This is all because you can’t remove the characters of a
string by choice. Example - Removing ‘M’& “ter” changing the sting value to “at”.

Hence sometimes we have to use StringBuffer as it is editable.
Remember:: StringBuffer is a class that belongs to the java.lang package.

Creating a String
To create a String we have to follow a procedure that is somewhat similar to creating an
object.
General way of creating an object—
 Classname obj=new Classname();
Syntax for creating a String ---
 String name=new String();
But if you want to declare and initialize a String simultaneously then the procedure is a
bit different. Imagine creating a string and initializing it with the word “India”.
 String name=“India”

Concatenation of String
Sometimes we have two strings, we can then use ‘+’ operators to join them, this is known
as Concatenation.
Have a look at this program…

class concat

{
public static void main(String args[])
{
String name="Ankit";
int marks=93;
System.out.println("Printing Details"+ " of "+"the student"); //Concatenating Strings
System.out.println(name+"'s"+" marks "+"are--"+marks);
}
}

Manipulating Strings
There are several methods associated with the “String” class that help us to manipulate
it. You already know that call to a method is made by its object in this manner---
 obj.method();
Thus in a similar way we will be using the methods.
 Example- String name=“India”;
name.length(); // name is the object of String class and length() is the method.

Finding length of a String---
Length of a string is defined as the number of characters in a String. We use the
“length()” method to get the length of a String.
Syntax—
 name.length();
Let us look at a program using this method-----

import java.io.*;
class length
{
public static void main (String args[]) throws IOException
{
String a;
int m;

InputStreamReader reader=new InputStreamReader(System.in);
BufferedReader input=new BufferedReader(reader);
System.out.println("Enter a String ");
a=input.readLine();
System.out.println(a.length());
}
}

 Remember: A space is also counted as a character.

Extracting Characters from a String
A String is made of several individual characters. A character can be an alphabet, a digit
or even a space. We can easily extract a single or multiple character(s) from a String. The
methods used are —
1. charAt();
2. getChars();

charAt()
The charAt() method is used to extract a single character from a String.
Example--
String xyz=“ Perfect ”;
char c=xyz.charAt(1);
The charAt() method will extract the first character of the String and will initialize the
variable “c” with it. If you imagined the first character of the String to be ‘P’, think
again! The characters of String start with 0, so the first character will be ‘e’.

The complete program..
class extch
{
public static void main(String args[])
{
String xyz="Perfect";

char c=xyz.charAt(1);
System.out.println("The character extracted is "+c);
}
}

getChars()
The getChars() method extracts multiple characters from the String.
Syntax—
getChars(int StartPos, int EndPos, TargetArrayString, int StartArrayIndex);

Let us suppose that we have a string “Networking”. You have to extract four characters
“work” from the string. As we have multiple characters to extract and store, a single
character variable won’t be able to hold them all. Thus a character’s array is needed (An
Array of characters can store as many characters as you wish!)
class extch2
{
public static void main(String args[])
{
String xyz="Networking";
char ch[]=new char[5];
xyz.getChars(3,7,ch,0);
System.out.println(ch);
}
}

getBytes()
The getBytes() method extracts String characters as bytes and stores it in a character
array.
Syntax--
getBytes(int StartPos, int EndPos, TargetArrayString, int StartArrayIndex);

class extBytes
{

public static void main(String args[])
{
String abc="Networking";
byte b[]=new byte[5];
abc.getBytes(3,7,b,0);
System.out.println(b);
}
}

At the time of compilation you might get this error—
Note:: filename.java uses or overrides a deprecated API.
Note:: Recompile with -Xlint:deprecation for details.

This shows that this program uses an API(Application Programming Interface) that is
deprecated (No longer popularly used), hence this error is flashed. You can ignore this
and simply execute the program.

toCharArray()
The toCharArray() method is used to convert a Strings content entirely into an array.

class arrycon
{
public static void main(String args[])
{
String name="Mobiles";
char c[]=new char[8];
c=name.toCharArray();
System.out.println(c);
}
}

substring() method
The substring method is used to extract some specified characters of a String and create a
new String from these characters.
As an example, consider a String ‘str’ initialized with the word “Penguin”.
If we write--
new1=str.substring(5);
If you will print the String “new1”, the output will be “in”.

What will you do to extract “Pen” as a String from Penguin. You will have to supply two
parameters to the substring() method.

class substr
{
public static void main(String args[])
{
String stv="Penguin";
String new1;
new1=stv.substring(0,3);
System.out.println("Contents of the new String are "+new1);
}
}

Remember: To extract “Pen” out of “Penguin”, the index you
need to specify are…..
For P-0
For n-3
Index number of n is “2” but still we need to specify “3”. This is
not so in case of “P”, which is the first number.

trim()
The trim() method is used to remove spaces in a String from both of its ends.
class trm
{
public static void main(String args[])
{
String jkl=" Welcome to India";
jkl=jkl.trim();
System.out.println(jkl);
}
}

Changing the case of Alphabets
You can change the case of alphabets easily from lower to uppercase and vice-versa
using toLowerCase() & toUpperCase().

class case1
{
public static void main(String args[])
{
String name="bill gates ";
name=name.toUpperCase();
System.out.println(name);
}
}

class case2
{
public static void main(String args[])
{
String name="COMPUTER APPLICATION";
System.out.println(name.toLowerCase());

}
}

equals()
The equals() method is used to check if true Strings are identical. You should keep in
mind that “hello” and “HELLO” are not identical as their cases are different.

class eql
{
public static void main(String args[])
{
String str="name";
String str2="Name";
if(str.equals(str2))
System.out.println("The two Strings are equal");
else
System.out.println("The two Strings are unequal");
}
}

If you don’t want to consider the difference of Case, the method “equalsIgnoreCase()”
should be used.

class eql
{
public static void main(String args[])
{
String str="name";
String str2="Name";
if(str.equalsIgnoreCase(str2))
System.out.println("The two Strings are equal");
else
System.out.println("The two Strings are unequal");
}
}

replace()
There may be a certain condition when you want to replace a certain character with
another character.
Syntax----
 name.replace(‘initial character’, ‘final character’)
class rep
{
public static void main(String args[])
{
String str="mango";
String str2;
str2=str.replace('m','t');
System.out.println("The second String is "+str2);
}
}

reverse()
The reverse() method is used to reverse the contents of a String.
class rev
{
public static void main(String args[])
{
StringBuffer frm=new StringBuffer("Sun Microsystems");
frm=frm.reverse();
System.out.println("String in its reverse order is--"+frm);
}
}

compareTo() method
This method is used to sort strings in Dictionary order. The method returns ‘0’,if two
Strings are exactly equal. A value less than ‘0’ is returned if the invoking string comes

before the other string in the dictionary. Hence it is absolutely clear that if a value greater
than ‘0’ is returned, the invoking string will be next to the other string.

Example---
class dict
{
public static void main(String args[])
{
String name="Anjali”;
String name2="Ankit";
if(name.compareTo(name2)<0)
System.out.println("1st");
else
System.out.println("2nd");
}
}

As “j” proceeds “k” in the dictionary, in this comparison a value smaller than zero is
returned. You can add an IgnoreCase to this method making it unaffected by case
changes. Finally the method will be..
 name.compareToIgnoreCase(name2)

Examples

As already discussed in chapter five, perfection is achieved by practice and persistence.
Here are some examples, you should try to solve without looking at the solutions.

Note: In some programs arrays have been used, skip them until you read that chapter.

Example 1
/* Finding the largest word in a String
 Example – “I am back”
 Answer = Back */
// author Nitish Upreti

class word
{
private String str;
private int c,len,l,u,c1,lar;
private int arr[]=new int[50];

//class constructor
word()
{
str="I am a proud Indian";
c=0;
l=str.length();
}

//Method to find largest word

public void store_lar()
{
u=0;
for(c=0;c<l;c++)
{
if(c==l-1 || str.charAt(c+1)==' ')
{
len=(c+1)-u;
arr[c1]=len;
c1++;
u=c+2;
}
}
}

//Calculate the length of Largest no

public void largest_no()
{
lar=arr[0];
for(c=0;c<arr.length;c++)
{
if(lar<arr[c])
lar=arr[c];
}
}

//Printing largest word
public void printlar()
{
u=0;
for(c=0;c<l;c++)
{
if(c==l-1 || str.charAt(c+1)==' ')
{
len=(c+1)-u;
if(len==lar)
{
for(int x=u;x<=c;x++)
System.out.print(str.charAt(x));
}
u=c+2;
}
}
}
}

class largest_word
{
public static void main(String args[])
{
word obj=new word();
obj.store_lar();
obj.largest_no();
obj.printlar();
}
}

Example 2
/* A program to sort names in Dictionary order */
// author Nitish Upreti

class dictionary

{
static String arr[]={"Ankit","Dhanajay","Vinod","Priyanka","Nitish"};

public static void main(String args[])
{
for(int c=0;c<arr.length;c++)
{
for(int c1=c;c1<arr.length;c1++)
{
if(arr[c].compareToIgnoreCase(arr[c1])>0)
{
String temp=arr[c];
arr[c]=arr[c1];
arr[c1]=temp;
}
}
System.out.println("Sorted String is");
System.out.println(arr[c]);
}
}
}

/* A program to print the character which has largest ASCII value as well as the char
itself
 E.G- education
 Output- u 117
 */
// author Nitish Upreti

class lar_ch_val
{
String str;
int c,lar,len,val=0,temp;
char ch;

public lar_ch_val()
{
str="BILL GATES";
c=0;
len=str.length();
}

public void lar()
{
for(c=0;c<len;c++)
{

ch=str.charAt(c);
temp=(int)ch; //explicit conversion of data types
if(temp>val) // finding max ASCII value
val=temp;
}
}

public void out()
{
ch=(char)val; //Getting no. back to char form
System.out.print(ch);
System.out.print("\t"+val);
}

public static void main(String sv[])
{
lar_ch_val obj=new lar_ch_val();
obj.lar();
obj.out();
}
}

Example 3
//reverse from last number...
/*Eg-"India is great";
Print-"great is India";*/
// author Nitish Upreti

class work_on
{
private String x;
private int c,l,t,k,b;
// Class constructor

work_on()
{
x="India is great";
l=x.length();
k=l-1;
b=0;
}

public void rev()
{
for(c=l-1;c>=b;c--)
{

while(x.charAt(k)!=' ' || k!=b)
k--;
t=k;
while(t<l)
{
System.out.print(x.charAt(t));
}
}
}
}

class last_rev
{
public static void main(String args[])
{
work_on obj=new work_on();
obj.rev();
}
}

Example 4
/* A program to convert a word into pig latin.
E.G-- Input=King
 Output=ngiKay*/
//author Nitish Upreti

import java.io.*;
class piglatin
{
public static void main(String args[]) throws IOException
{
String word;
InputStreamReader rd=new InputStreamReader(System.in);
BufferedReader inp=new BufferedReader(rd);

System.out.println("Enter a word");
word=inp.readLine();

word=word.trim();

int c,l=word.length(),pos=0;
char ch;

for(c=l-1;c>=0;c--)
{
ch=word.charAt(c);

if(ch=='a'|| ch=='e'|| ch=='i'|| ch=='o'|| ch=='u')
pos=c;
}

for(c=pos+1;c<l;c++)
System.out.print(word.charAt(c));

for(c=pos;c>=0;c--)
System.out.print(word.charAt(c));

System.out.print("ay");
}
}

Example 5
/* Reversing a String /*
import java.io.*;
class rev
{
public static void main(String args[]) throws IOException
{
InputStreamReader reader=new InputStreamReader(System.in);
BufferedReader input=new BufferedReader (reader);
String inp;
int c,b=0,e;
System.out.println("Enter a String to reverse");
inp=input.readLine();
e=inp.length();
char arr[]=new char[1000];
inp.getChars(b,e,arr,0);
System.out.println("**********************");
for(c=e;c>=0;c--)
System.out.print(arr[c]);
}
}

Example 6
/* A program used to search a number /*

class search_word
{
public static void main(String args[])
{
String org="I am slowly improving my skills";
org=org.trim();

String find="my";
String temp=new String();

int c,len=org.length();
int beg=0;
boolean swt=false;

for(c=0;c<len;c++)
{
if(c==len-1 || org.charAt(c+1)==' ')
{
temp=org.substring(beg,c+1);
//System.out.println(temp);
if(temp.equals(find)) //Ignore Case Optional
swt=true;
beg=c+2;
}
}

if(swt==false)
System.out.println("Not Found!!");
else
System.out.println("Found!!!");
}
}

Example 7
/* A program to print name in short form
 E.G- Mohandas Karamchandra Ganghi
 output- M.K. Gandhi*/
//author Nitish Upreti

class shname
{
String name=new String();
String namelast=new String();
int l,c,k=0,st,t;
char ch[]=new char[15];

shname()
{
name="Bhim Rao Ambedkar";
l=name.length();
c=l-1;
}

void workaround()
{
for(c=l-1;c>=0;c--)
{
if(name.charAt(c-1)==' ')
{
st=c;
break;
}
}
namelast=name.substring(st,l);

for(c=st-2;c>=0;c--)
{
if(c==0 || name.charAt(c-1)==' ')
{
ch[k]=name.charAt(c);
k++;
}
}
t=k;
}

void print_it()
{
for(c=t-1;c>=0;c--)
{
System.out.print(ch[c]+".");
}
System.out.print(" ");
System.out.print(namelast);
}

public static void main(String args[])
{
shname st=new shname();
st.workaround();
st.print_it();
}
}

Exercise

Q1. How does a String differ from other conventional data type?
Q2. State the difference between the classes “String” and “StringBuffer”.
Q3. What do you understand by the term concatenation of String?
Q4. Explain getChars and getBytes.
Q5. Why two same strings with different cases reported unequal by Java?

 Arrays - A collection of Similar Data Type

Introduction
The concept of several data type and String has already been taught to you. They provide
us with a lot of flexibility to work with any type of data. You might be wondering if you
have mastered everything, but surely this is a wrong supposition until you have worked
with Arrays. Soon you will realize that Arrays are one of the key features of Java.

Create a program that finds the largest number between the three numbers entered. You
will surely be able to do it. Now picture yourself in a condition where the numbers of
variables entered are also unknown, now you will get stuck here. To write such a
program you need to learn arrays.

Array
An Array is a collection of similar type of finite numbers of data values, stored in
memory location. An array of integers, characters, Strings as well as objects can be
created.
There are two types of Arrays —

1. One-Dimensional
2. Multi-dimensional

One-Dimensional
Have a look at the declaration of a one-dimensional array.
Syntax— int arr []=new int[2]; //Declaration of an Array that can hold 2 variables
 OR
int []arr=new int[2];
An array is said to be single or multi-dimensional (two, three) by the number of
subscripts. An array with a single subscript always has one square bracket. So how is
array able to store multiple values of any kind of data?
Here is the answer…
int arr[0]=3;
int arr[1]=4
The different values are stored in indexes that begin with zero. Going through the internal
working you will find that our temporary memory is allocated serial wise in a continuous
way.

 0 1 2 3 4 5 6 7 8

You can work over these individual values easily.

Remember: Index of arrays always begin with zero.

Multi-Dimensional
A multidimensional array has more than one subscript. Arrays with two and three
subscripts are two and three dimensional arrays respectively.
A multidimensional array stores in rows and columns and not simply serial wise.

In this picture we can see a double-dimensional array (3*3). The values are stored in this
way-

Row Column Value
 0 0 3
 0 1 9
 1 2 6
 2 0 7

Other indexes are empty.
Declaration for this multidimensional array is ---
 int ar[][]=new int[3][3];
Working with Arrays

Consider an Array
int Arr[]=new int[5]; //Declaration

Initialization ---
We can initialize arrays by two ways-
Arr [0]=1;
Arr [1]=2;
Arr [2]=3;
Arr [3]=4;
Arr [4]=5;

A more convenient way ---
int Arr[]={1,2,3,4,5};

Input from the User
You will have to use InputStreamReader and BufferedReader classes to get input from
the user. As an array might take hundreds of values, using loops (mostly ‘for’) to get the
input is a good idea.

import java.io.*;
class arr
{
public static void main(String args[]) throws IOException

{
int ar[]=new int[5]; // Array Declaration
int c;
InputStreamReader rd=new InputStreamReader(System.in);
BufferedReader inp=new BufferedReader(rd);

for(c=0;c<5;c++) //a loop to take four inputs
{
System.out.println("Enter array elements");
String v1=inp.readLine();
ar[c]=Integer.parseInt(v1); //According to the value of ‘c’ the array gets initialized
}

System.out.println("Printing details of the Array");
for(c=0;c<5;c++)
{
System.out.println(+ar[c]);
}
}
}

Two Worked Out Examples
“Practice makes a student perfect!”, this statement is the ultimate truth in programming.
Have a look at these examples and thereafter you will definitely understand Arrays better.
Majority of the programs will be covered in the “Examples” section.

Sum of Array Elements

import java.io.*;
class sum
{
public static void main(String args[]) throws IOException

{
int sum=0,lim,c;
int arr[]=new int[50];
InputStreamReader rd=new InputStreamReader(System.in);
BufferedReader inp=new BufferedReader(rd);

System.out.println("Enter the limit for numbers");
String v1=inp.readLine();
lim=Integer.parseInt(v1);

for(c=0;c<lim;c++)
{
System.out.println("Enter Array Elements");
String v2=inp.readLine();
arr[c]=Integer.parseInt(v2);
}

for(c=0;c<lim;c++)
{
sum=sum+arr[c];
}

System.out.println("Sum of Array Elements is" +sum);
}
}

Finding Largest and Smallest number in an Array

class larsml
{
public static void main(String args[])
{
int arr[]={8,5,4,3,9};
int c=0,lar=arr[c],sml=arr[c];

System.out.println("Processing.....");
for(c=0;c<5;c++)
{s
if(arr[c]>lar)
lar=arr[c];
if(arr[c]<sml)
sml=arr[c];
}
System.out.println("Largest No. is "+lar);
System.out.println("Smallest No.is "+sml);
}
}

String Array
A program demonstrating an array of “String” class
// Printing marks of Students
import java.io.*;
class record
{
public static void main(String args[]) throws IOException
{
String arr[]={"Nilay","Nitish","Nitin"};
int marks[]={97,92,90};
String inp;
boolean fnd=false; // Initially initialized with false to demonstrate that our search has
//not been successful
int c;

InputStreamReader rd=new InputStreamReader(System.in);
BufferedReader input=new BufferedReader(rd);
System.out.println("Enter a Name");
inp=input.readLine();

for(c=0;c<3;c++)
{
if(inp.equalsIgnoreCase(arr[c]))
{
System.out.println("Marks are " +marks[c]);
fnd=true; //The “Not Found!!!” message will not be printed in this case
}
}

if(fnd==false)
System.out.println("Not Found!!!");
}
}

Operations on Array
 Many operations can be performed on elements in an array. According to the scope of
syllabus we will discuss some of them here ---

1. Searching(Linear, Binary)
2. Sorting(Selection, Bubble)

Searching
We can easily search for any content in an array. Let us suppose that our array has four
integers and we want to find out if one of them is ‘6’. Searching will serve the purpose.

1st Approach
The first approach is to compare each and every element of the array with the number
being searched.
Say we have an array with elements ---
4, 5, 2, 0, 3
Searched Number- 6
We will start the searching from index zero which contains the value four, the process
will continue till the limit of Array (4) is reached.

Actual Program – LINEAR SEARCH

import java.io.*;
class linsrch
{
public static void main(String args[]) throws IOException
{
int arr[]={5,2,7,8,1,0};
int c,no;
boolean fnd=false;
InputStreamReader rd=new InputStreamReader(System.in);
BufferedReader inp=new BufferedReader(rd);

System.out.println("Enter a number to Search");
String v1=inp.readLine();
no=Integer.parseInt(v1);

for(c=0;c<6;c++)
{
if(no==arr[c])
{
System.out.println("Successful Search");
fnd=true;
}
}

if(fnd==false)
System.out.println("Requested Number Not Found!!");
}
}

2nd Approach

The second approach of searching is a bit more complicated than the first one. This
scheme of searching can only be applied on a sorted array (An array with elements
arranged either in ascending or descending order). The basic concept is ---

An array num[] ={4, 9, 11, 13, 15, 19};
Imagine that you want to know if this array “num” contains the digit ‘9’. Follow these
steps to search for the number ---
Have two variables, low and high. Variable low should be initialized with zero and high
with the array’s limit (Use the function array_name.length).

1. Sum up the lower and upper limit. (In this case sum=6).
2. Divide it by two. (Here the answer is 3).
3. Check the value in the array’s index. (Here it is 13)
4. If the searched number is greater than the number in the index, set the low

variable to the index number.
If the searched number is smaller (Just like our present example) set the upper
bound to the index.

5. Repeat the process till the number is found.

Actual Program --- Binary Search

import java.io.*;
class binsrch
{
public static void main(String args[]) throws IOException
{
int arr[]={3,5,6,9,10};
int no;
int low=0,up=arr.length,mid;
boolean fnd=false;
int add=0;
InputStreamReader rd=new InputStreamReader(System.in);
BufferedReader inp=new BufferedReader(rd);

System.out.println("Enter a number");
String v1=inp.readLine();
no=Integer.parseInt(v1);

while(low<=up)
{
mid=(low+up)/2;
if(no==arr[mid])
{
fnd=true;

add=mid;
break;
}
else
if(no>arr[mid])
low=mid+1;
else
up=mid-1;
}

if(fnd==true)
{
System.out.println("Search Successful!!");
System.out.println("Index No. " +add);
}
else
System.out.println("Search Unsuccessful!!");
}
}

Sorting
The word “sorting” means to arrange systematically in a certain order, imagine a
telephone directory that contains names in an alphabetically sorted way. Here we will
study to sort numbers in increasing and decreasing order.

1st Approach
The first approach to sorting is the “selection sort”. In this technique the smallest number
is checked and placed at the first index. The checking is again done in between the rest of
the numbers and the smallest number is calculated. If we are sorting the array in
descending order, the largest number is calculated.

Actual Program ---

import java.io.*;
class selsort
{
public static void main(String args[]) throws IOException
{
InputStreamReader reader=new InputStreamReader(System.in);
BufferedReader input=new BufferedReader (reader);
{
int k,n,temp=0,c,j;
int ever[]=new int[150];
System.out.println("Enter the Limit of Array");
String v1=input.readLine();
n=Integer.parseInt(v1);
for(c=0;c<n;c++)
{
System.out.println("Enter the Element to sort ");
String v2=input.readLine();
ever[c]=Integer.parseInt(v2);
}
for(k=0;k<n ;k++)
{
for(j=k+1;j<n;j++)
{
if(ever[j]<ever[k])
{
temp=ever[k];
ever[k]=ever[j];
ever[j]=temp;
}
}
}
for(c=0;c<n;c++)
{
System.out.println("Array after sorting is"+ever[c]);
}
}
}
}

The Logic
Understanding logic behind a program is the most important part. Most of the students
escape this step and finally mug up the programs. Never try to do this.

The main code in the whole program is ---

for(k=0;k<n ;k++)
{
for(j=k+1;j<n;j++)
{
if(ever[j]<ever[k])
{
temp=ever[k];
ever[k]=ever[j];
ever[j]=temp;
}
}
}

Look at the structure of the code. We have two ‘for’ loops, an ‘if’ condition, some cryptic
statements inside the block.

The two loops ---
The inner nested loop compares an element with other elements. The outer loop repeats
this step for each an every element.

‘if ‘condition
The ‘if’ condition checks, whether the number in the first index is the smallest.

Statements inside ‘if’ block
The statements inside the ‘if’ block are executed and help us to swap the values. In this
process we have to take a temporary variable.

2nd Approach
The second approach to sorting is known as bubble sort. In this sorting technique an
element is compared with the next element.

//A program to sort an array using bubble the sort technique
import java.io.*;
class bub
{
public static void main(String args[]) throws IOException
{
InputStreamReader reader=new InputStreamReader(System.in);
BufferedReader input=new BufferedReader (reader);
{
int i,k=0,j,n,temp=0;
int a[]=new int[150];
System.out.println("Enter the Limit of Array");
String v1=input.readLine();
n=Integer.parseInt(v1);
for(i=0;i<n;i++)
{
System.out.println("Enter the Element to sort ");
String v2=input.readLine();
a[i]=Integer.parseInt(v2);
}
i=0;
for(k=0;k<n;k++)
{
for(j=0;j<n-1;j++)
{
if(a[j]>a[j+1])
{
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
for(i=0;i<n;i++)
{
System.out.println(+a[i]);
}
}
}
}

In a quick glance both of the sorting techniques might appear to be same but there is a
slight difference which is quite significant. The general use of loops, if statement and the
statements inside the ‘if’ block remain same.

Exercise

Q1. Explain arrays.
Q2. State the difference between Single or Multidimensional array.
Q3. Why loops are are used to take input?
Q4. State the difference between String and arrays of character.
Q5. Explain the two types of searching with their algorithm.
Q6. What do you understand by the term sorting?
Q7. State the significance of subscript in arrays.

Project.txt
 PROJECT WORK

 IQ Tester
What is this IQ tester?
Playing this game is very easy.
Steps of Game-
1.Computer automatically thinks a No.
2.You are asked to enter certain No. of chances.
3.You can have at most eight chances.Enter the maximum chances according to your
skills.
4.You have to start by entering a no.
5.Computer tells you how far you are from the No. computer generated in step 1.
You try to guess the number in the maximum chances.
Computer now rates you IQ.If you will guess early the IQ will be shown better!!!

REMEMBER :I have not used exception handling statements such as(try-catch) in my
programs.
If you plan to make the IQ-Tester as your project then it will be a good idea to
reconstruct
the entire program using these statements.

Page 1

make.txt
import java.io.*; //For getting input from the user
import java.util.*; // Generating a Random number between 0-100
import java.lang.*;// Basic runtime support.
class make
{
String name; // "name" entered by the user is stored by the user
int c=1,gen=0,f,guess,ch,chance=1,user,made=0;
// Variable "c"--- Acts as the seed number
// Variable "gen"- The number randomly generated by the computer is stored in this
variable
// Variable "
public void gen() //Method that generates the random no.
{
while(c<=100) // Till the computer generates a number less than 100, continue
generating a number
{
Random m=new Random(); //Creating an object of "Random" class.
gen=m.nextInt(c);// Calling a method "nextInt(seed value)" using an instance 'm'
that generates an integer
c++;
}
}
public void inp() throws IOException //Method taking the input
{
InputStreamReader reader=new InputStreamReader(System.in); //InputStreamReader for
the input
BufferedReader input=new BufferedReader(reader); //InputStreamReader for the input
System.out.println("$$$$$$$$$$$$$$$$Welcome to Guess It!!$$$$$$$$$$$$$$$$$$$");
//Message
System.out.println("$$$$$$$$$ Enjoy the game and test your IQ $$$$$$$$$");//Message
System.out.println("Go through Readme to learn to play the Game");//Message
System.out.println("Enter Your Name ");
name=input.readLine();// Getting a String
System.out.println("Enter 1 to play the game==");
System.out.println("Enter 2 to see the credits==");
String v1=input.readLine();
ch=Integer.parseInt(v1); //Getting the choice of the user
}
public void work() throws IOException
{
InputStreamReader reader=new InputStreamReader(System.in);
BufferedReader input=new BufferedReader(reader);
if(ch==1) //If input is 1, the game is executed
{
System.out.println("Thanks " +name+" for playing Guess It!! Developed by Nitish
Upreti");
System.out.println("According to your skills please specify the No. of chances you
Want.");
System.out.println("You can not have more than eight chances");
String v6=input.readLine();
user=Integer.parseInt(v6); //Maximum chances in which user wants to guess
if(user>8)
{
System.out.println("Invalid Choice!!!!"); //You cannot hve more than 8 chances
made=2;
}
if(user<=8) //If you have entered the number of choices in limit, the prg further
executes
{
while(chance<=user) // Till u have not used up all ur chances
{
System.out.println("Enter a no. to start guessing(No. should be within 0-100)");
String vv=input.readLine();

Page 1

make.txt
guess=Integer.parseInt(vv); // The number u entered is taken by var"guess"
int temp1=gen-guess; // If the number to be guessed is greater temp1 takes the
diff
int temp=guess-gen;// If the number to be guessed is smaller temp takes the diff
if(guess==gen || guess==1706) //If the guessed no. becomes equal to the randomly
generated number,made becomes 1 thus shows the comp that the num finally guessed
// The no. 1706 acts as a secret cheat code, this can make you win anytime without
knowing the guessed number
{
made=1;
break;// If num is guessed, we need to get out of the loop
}
else
if(gen>guess) // if the gen no. was greter than our 1st input
{
if(temp1<=5) // According to the diff we find how far we are from the gen number.
System.out.println("You are very near(below the gen number)");
else
if(temp1<=15)
System.out.println("You are near(below the gen number)");
else
if(temp1<=30)
System.out.println("You are a little away(below the gen number)");
else
if(temp1<=50)
System.out.println("You are far(below the gen number)");
else
System.out.println("You are very far(below the gen number)");
}
else
if(gen<guess)
{
if(temp<=5)
System.out.println("You are very near(Above the gen num)");
else
if(temp<=15)
System.out.println("You are near(Above the gen num)");
else
if(temp<=30)
System.out.println("You are a little away(Above the gen num)");
else
if(temp<=50)
System.out.println("You are far(Above the gen num)");
else
System.out.println("You are very far(Above the gen num)");
}
else
System.out.println("Not Possible");
chance++; // Counting the number of chances you have used.
}
if(made==1) //To check if the number was guessed
{
if(chance==1) // if guessed in first chance
{
System.out.println("\n"); //Printing an empty line
System.out.println("\n"); //Printing an empty line
System.out.println("The No. to be Guessed was "+gen);
System.out.println("Guessed in first attempt"); //Message
System.out.println("You are genius how did you guessed it so early? You have a great
luck and the best IQ");//Message
}
else
if(chance==2)

Page 2

make.txt
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The No. to be Guessed was "+gen);
System.out.println("Guessed in second attempt"); //Message
System.out.println("Well done!!you have a v.good IQ. You can go far away in
life.Good Luck");
}
else
if(chance==3)
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The No. to be Guessed was "+gen); //Message
System.out.println("Guessed in third attempt"); //Message
System.out.println("Your IQ deserves a praise from us.Congrats!!!!");
}
else
if(chance==4)
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The No. to be Guessed was "+gen);
System.out.println("Guessed in fourth attempt"); //Message
System.out.println("Your Iq is above average.Some more efforts from your side and
you will surely improve");
}
else
if(chance==5)
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The No. to be Guessed was "+gen);
System.out.println("Guessed in fifth attempt"); //Message
System.out.println("You have an average IQ.Work more to polish it!!"); //Message
}
else
if(chance==6)
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The NO. to be guessed was "+gen);
System.out.println("Guessed in sixth attempt"); //Message
System.out.println("Your IQ is not up to the mark. You can do much better than
this!!"); //Message
}
else
if(chance==7)
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The No. to be guessed was "+gen);
System.out.println("Guessed in seventh attempt"); //Message
System.out.println("You IQ needs to be much more sharper.Try until you reach the
goal");
}
else
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The No. to be guessed was "+gen);
System.out.println("Guessed in eighth attempt "); //Message
System.out.println("You have a weak and inefficient IQ. So play this game

Page 3

make.txt
continuously and improve");
}
}
else
if(made==0) //If made is zero then this shows that the no was ot guessed.
{
System.out.println("\n");
System.out.println("\n");
System.out.println("The No. to be guessed was "+gen);
System.out.println("You were not able to guess the No.");
System.out.println("Your IQ needs a very serious attention from you!!! Work hard");
}
}
else // This message will be printed if you specified a value greater than 8
System.out.println("Go through read me in order to know how to play the game");
}
else
if(ch==2) //To see the credits
{
System.out.println("This program has been developed by Nitish Upreti.");
System.out.println("Thanks for using my program!!!");
System.out.println("Please send me your feedback");
System.out.println("Special thanks to my father Mr. P.K Upreti for his constant
support");
System.out.println("Special thanks to Mr. Ranganathan Sowndar Rajan for his guidance
");
System.out.println("A very very thanks my Principle mam Ms. Madhu Khati for all the
motivation she has provided me");
System.out.println("Some people who have helped me a lot are -- My mom(Mrs.Daya
Upreti) and my sister(Ms.Priyanka Upreti)");
}
else
System.out.println("Invalid choice"); //For invalid input
}
}

Page 4

process.txt
import java.io.*;
class process
{
public static void main (String args[]) throws IOException
{
 InputStreamReader inputstreamreader = new InputStreamReader(System.in);
 BufferedReader bufferedreader = new BufferedReader(inputstreamreader);
 String s;
 do
 {
 make obm=new make();
 obm.gen();
 obm.inp();
 obm.work();
 System.out.println("Enter Y if you want to continue else enter N=");
 s = bufferedreader.readLine();
 }
 while(s.equalsIgnoreCase("Y"));
 }
 }

Page 1

	First Page-Final.bmp
	Preface.doc
	Chapter 1-Java & OOP.doc
	Exercises.doc
	Working with Data Types and Constants.doc
	Exercise.doc
	Classes and functions.doc
	Exercise.doc
	Constructors.doc
	Exercise.doc
	Loops and Conditional Statements.doc
	Examples.doc
	Exercises.doc
	Exception Handling in Java.doc
	Exercise.doc
	Java Packages.doc
	Exercise.doc
	String Handling in Java.doc
	Examples.doc
	Exercises.doc
	Arrays.doc
	Exercise.doc
	Project

